$29 QAQWER Retro Bluetooth Speaker, Nostalgic Old-Fashioned Style, M Electronics Portable Audio Video Portable Speakers Docks QAQWER Retro Bluetooth NEW before selling Speaker M Style Old-Fashioned Nostalgic $29 QAQWER Retro Bluetooth Speaker, Nostalgic Old-Fashioned Style, M Electronics Portable Audio Video Portable Speakers Docks QAQWER Retro Bluetooth NEW before selling Speaker M Style Old-Fashioned Nostalgic betterapp.ca,/ambery881188.html,M,Bluetooth,Speaker,,Retro,Nostalgic,Electronics , Portable Audio Video , Portable Speakers Docks,Old-Fashioned,$29,QAQWER,Style, betterapp.ca,/ambery881188.html,M,Bluetooth,Speaker,,Retro,Nostalgic,Electronics , Portable Audio Video , Portable Speakers Docks,Old-Fashioned,$29,QAQWER,Style,

QAQWER Retro Bluetooth NEW before selling Japan's largest assortment Speaker M Style Old-Fashioned Nostalgic

QAQWER Retro Bluetooth Speaker, Nostalgic Old-Fashioned Style, M

$29

QAQWER Retro Bluetooth Speaker, Nostalgic Old-Fashioned Style, M

|||

Product description

Color:D

Product Description
◆[Retro design]Inherit the classics and inherit the 65-year history of craftsmanship
◆[Fully compatible] AUX external amplifier, audio decoding, efficient and stable connection, low power consumption, strong anti-interference
◆[Light of the Night] Red coil, electroplating button, with orange indicator light, a good helper for eye protection at night, convenient and beautiful dial
◆[Complete function]Bluetooth speaker + radio is integrated, which is called a true Bluetooth speaker radio
◆[Dual decoding, lossless audio] Adopting a brand-new dual-pass computing solution, quickly analyze the WAV lossless music mode, and output comparable to the original soundtrack

parameter
1. Output power: 5W
2. Shell material: plastic
3. Cabinet material: ABS
4. Weight: 0.55(ib)
5. Size: 4.4X2X2.6 (in)
6. Color: A, B, C
7. Battery: Built-in lithium battery
8. Support format: TF card
9. Bluetooth version: 4.1

Product packaging
1. Bluetooth speakers
2. Charging cable
3. Instructions
4. Packing box

QAQWER Retro Bluetooth Speaker, Nostalgic Old-Fashioned Style, M


Tutorials, Exercises published recently

SQL Challenges-1: Exercises, Practice, Solution

Accounting Quizzes

Adobe Quizzes

Adobe Quizzes: Angular Part-I

Adobe Quizzes: Angular Part-II

Adobe Quizzes: Android Part-I

LJGYX Sewing Needle Lipstick Needle Pin Cushion with 5pcs Needle

Adobe Quizzes: Agile Methodologies Part-I

Adobe Quizzes: Agile Methodologies Part-II

Adobe Quizzes: Agile Methodologies Part-II

Adobe Quizzes: Illustrator Part-I

Adobe Quizzes: Illustrator Part-II

Adobe Quizzes: Illustrator Part-III

Adobe Quizzes: Photoshop Part-I

Adobe Quizzes: Photoshop Part-II

Bash Unix shell Quizzes

Python Quizzes

Python Introduction

Python Quizzes Variable

Python Quizzes Types

Python Quizzes Strings

HHUAN Phone Case for Gigaset GX290 (6.1"), 2 Pcs Shockproof Soft

Python Quizzes Dictionaries

Python Quizzes List Part-I

Python Quizzes List Part-II

Python Quizzes Tuples

Python Quizzes Files

JavaScript Quizzes

JavaScript Quizzes: Part-1

JavaScript Quizzes: Part-2

JavaScript Quizzes: Part-3

Pandas Handling Missing Values: Exercises, Practice, Solution

Pandas GroupBy: Split-Apply-Combine Exercises, Practice, Solution

Python Pandas String and Regular Expression: Exercises, Practice, Solution

Pandas Styling: Exercises, Practice, Solution

Python Data Types: Sets - Exercises, Practice, Solution

PHP Basic Algorithm: Exercises, Practice, Solution

C++ Basic Algorithm: Exercises, Practice, Solution

C# Sharp Basic Algorithm: Exercises, Practice, Solution

Vue Installation

Jest

Cypress Overview

NumPy: Array creation routines

NumPy: N-dimensional array (ndarray)

NumPy: Data types

NumPy: Installation

NumPy Tutorial

Pandas DataFrame: combine_first() function

Pandas DataFrame: combine() function

Pandas DataFrame: eq() function

Pandas DataFrame: ne() function

Pandas DataFrame: ge() function

Pandas DataFrame: le() function

Leeson Electric C145T17WK55 Washdown Duty Brake Motor (Painted)

Pandas DataFrame: lt() function

Pandas DataFrame: rpow() function

Pandas DataFrame: rmod() function

Pandas DataFrame: rfloordiv() function

Pandas DataFrame: rtruediv() function

Pandas DataFrame: rdiv() function

Pandas DataFrame: rmul() function

Pandas DataFrame: rsub() function

Pandas DataFrame: radd() function

Pandas DataFrame: dot() function

Pandas DataFrame: pow() function

Pandas DataFrame: mod() function

Pandas DataFrame: floordiv() function

Pandas DataFrame: truediv() function

Pandas DataFrame: div() function

Pandas DataFrame: mul() function

Pandas DataFrame: sub() function

Pandas DataFrame: add() function

Pandas DataFrame: query() function

Pandas DataFrame: mask() function

Pandas DataFrame: where() function

Pandas DataFrame: isin() function

Pandas DataFrame: xs() function

Pandas DataFrame: tail() function

Pandas DataFrame: pop() function

Pandas DataFrame: lookup() function

Pandas DataFrame: itertuples() function

Pandas DataFrame: iterrows() function

Pandas DataFrame: iteritems() function

Pandas DataFrame: items() function

Pandas DataFrame: iloc() function

Spoonflower Peel and Stick Removable Wallpaper, Neutral Beige Bl

Pandas DataFrame: iat() function

Pandas DataFrame: at() function

Pandas DataFrame: head() function

Pandas DataFrame: notna() function

Pandas DataFrame: isna() function

Pandas DataFrame: copy() function

Pandas DataFrame: infer_objects() function

Pandas DataFrame: astype() function

Pandas DataFrame: empty() function

Pandas DataFrame: memory_usage() function

Pandas DataFrame: shape() function

Pandas DataFrame: size() function

Pandas DataFrame: ndim() function

Pandas DataFrame: axes() function

Pandas DataFrame: values() function

Pandas DataFrame: select_dtypes() function

Pandas DataFrame: dtypes() function

Pandas: DataFrame

Python: Machine learning - Scikit-learn Exercises, Practice, Solution

Yarn - Package Manager

npm - Package Manager

Mocha-JavaScript Testing Frame work

The Apollo Data Graph Platform

Python Lambda - Exercises, Practice, Solution

NumPy: Logic functions routines

NumPy: Functional programming routines

NumPy: Financial functions routines

NumPy: Input and output routines